Resonant laser printing of structural colors on high-index dielectric metasurfaces
نویسندگان
چکیده
Man-made structural colors, which originate from resonant interactions between visible light and manufactured nanostructures, are emerging as a solution for ink-free color printing. We show that non-iridescent structural colors can be conveniently produced by nanostructures made from high-index dielectric materials. Compared to plasmonic analogs, color surfaces with high-index dielectrics, such as germanium (Ge), have a lower reflectance, yielding a superior color contrast. Taking advantage of band-to-band absorption in Ge, we laser-postprocess Ge color metasurfaces with morphology-dependent resonances. Strong on-resonance energy absorption under pulsed laser irradiation locally elevates the lattice temperature (exceeding 1200 K) in an ultrashort time scale (1 ns). This forms the basis for resonant laser printing, where rapid melting allows for surface energy-driven morphology changes with associated modification of color appearance. Laser-printable high-index dielectric color metasurfaces are scalable to a large area and open a new paradigm for printing and decoration with nonfading and vibrant colors.
منابع مشابه
Mie-resonant dielectric nanostructures as a platform for functional nanophotonics
This scheme gives the possibility of matching the coherence time of the broadband squeezed light to the response time of the photodetector. We finally discuss a temporal imaging scheme which allows to partially compensating the frequency dispersion of the OPA. All-dielectric nanoparticles with a high refractive index support strong localized electric and magnetic multipolar Mie-type resonances....
متن کاملSelective Dielectric Metasurfaces Based on Directional Conditions of Silicon Nanopillars
Dielectric metasurfaces based on high refractive index materials have been proposed recently. This type of structure has several advantages over their metallic counterparts. In this work, we demonstrate that dielectric metasurfaces can be theoretically designed satisfying Kerker's zero-forward condition. This is the first time that a dielectric metasurface based on this principle has been desig...
متن کاملEnhancement of artificial magnetism via resonant bianisotropy.
All-dielectric "magnetic light" nanophotonics based on high refractive index nanoparticles allows controlling magnetic component of light at nanoscale without having high dissipative losses. The artificial magnetic optical response of such nanoparticles originates from circular displacement currents excited inside those structures and strongly depends on geometry and dispersion of optical mater...
متن کاملStructural color printing based on plasmonic metasurfaces of perfect light absorption
Subwavelength structural color filtering and printing technologies employing plasmonic nanostructures have recently been recognized as an important and beneficial complement to the traditional colorant-based pigmentation. However, the color saturation, brightness and incident angle tolerance of structural color printing need to be improved to meet the application requirement. Here we demonstrat...
متن کاملOptical spectroscopy of single Si nanocylinders with magnetic and electric resonances
Resonant electromagnetic properties of nanoparticles fabricated from high-index semiconductor or dielectric materials are very promising for the realization of novel nanoantennas and metamaterials. In this paper we study optical resonances of Si nanocylinders located on a silica substrate. Multipole analysis of the experimental scattering spectra, based on the decomposed discrete dipole approxi...
متن کامل